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Abstract 
 
 
     NASA is increasingly dependent upon software in 
systems critical to the success of NASA’s mission.  The 
capability to accurately measure the reliability of the 
software in these systems is essential to ensuring that 
NASA systems will meet mission requirements.  The 
Software Assurance Technology Center at the NASA 
Goddard Space Flight Center explored software 
reliability modeling as a practical measurement 
technique. This paper describes software reliability 
modeling, the effort required to use it, and potential 
improvements to the models to allow for fault correction. 
 
 
1.    Introduction 
 
 
      NASA is increasingly dependent upon systems in 
which software is a major component. These systems are 
critical to the success of NASA’s mission and must 
execute successfully for a specified time under specified 
conditions, that is, they must be reliable.  The capability 
to accurately measure the reliability of the software in 
these systems is an essential part of ensuring that NASA 
systems will meet mission requirements.  The Software 
Assurance Technology Center (SATC) at the NASA 
Goddard Space Flight Center (GSFC) conducted a study 
that addressed the relationships between hardware and 
software reliability to identify potential improvements to 
the software reliability models and to determine how 
readily the approach could be applied to typical GSFC 
projects.  A paper, “Application and Improvement of 
Software Reliability Models,” describing the complete 
study is located on the SATC WEB site at 
http://satc.gsfc.nasa.gov/support/index.html. 

     Software reliability engineering mathematically 
models the behavior of a software system based on its 
failures. Predictions such as time-to-next failure, mean 
time to failure, total number of faults remaining in the 
system, number of faults remaining at time t are 
examples of measurements derived from the reliability 
models and project failure data. These measurements 
provide an indicator of reliability growth, for example, 
as the mean time to failure gets larger, then the software 
is considered to have shown reliability growth.  
     The equations for the models have parameters 
estimated from techniques like least squares or 
maximum likelihood estimation. Then the equation of 
the models, often containing exponents or logarithms, 
must be executed. Tedious computationally, 
mathematical and statistical functions provide the 
predictions and degrees of confidence for the 
predictions.  Verifying that the selected model is valid 
for the particular data set may require iteration and study 
of the model assumptions. While the entire process may 
be tedious and error-prone when performed manually, 
software tools reduce the difficulties. It provides 
managers with a valuable measurement to be used with 
other reliability metrics in making important decisions 
such as test or maintenance schedules and product 
release.  
      We used a software tool to model GSFC data to 
determine if this measurement technique is practical. We 
identify the type of effort needed by the project staff to 
use this measurement technique successfully.   Specific 
issues that may affect usage of these models include the 
modeling process, data collection requirements, 
availability of software tools to support these models, 
and difficulties of using the models and interpreting their 
results.  We show that a modification to the 
Schneidewind model to account for the fault correction 
process may be a useful improvement for software 
reliability modeling. 
 



 
2.    The modeling process 
 
 
     The current software reliability modeling process is 
based on features of hardware. While some models 
compensate for some differences between hardware and 
software, overall they do not. Schneidewind’s model 
does by discounting the earlier part of the software 
failure history because of an assumption that after 
correction, the earlier number of failures does not affect 
the current failure rate.  Some models identifying the 
mean time to next failure assume that the system has 
been tested after debugging with no failures observed, 
but for software latent faults often exist and cause failure 
in operation. While the models assume that the system is 
exercised in circumstances very similar to the final 
operating environment, it is often extremely difficult to 
test software in its operating environment  [1]. 
      The AIAA’s Recommended Practice for Software 
Reliability defines a formal procedure of eleven steps for 
software reliability estimation [2].   The first three 
pertain to establishing requirements for the system and 
are outside this discussion.  Another step, defining 
failure, is accomplished by NASA guidelines on defining 
non-conformances [3]. The remaining 7 steps are 
specific to software reliability modeling and are 
discussed in the remaining paragraphs of this section. 
Some steps may require interaction between project 
members and the reliability analyst. They include 
characterizing the operational environment, selecting 
tests, selecting the models, collecting the data, estimating 
parameters, validating the models and performing 
analysis.  We examined these steps to determine if 
software reliability modeling techniques could be 
practically used at GSFC.  
  
2.1  Characterizing the operational environment  
 
     Reliability measurement assigns some reliability 
measure to a system, such as predicting the number of 
faults remaining, the number of failures expected in a 
given time, how much time is needed to find a specified 
number of faults, or the probability of operating without 
failure in a specified time.  Reliability measures may be 
determined for system components or for the entire 
system.  Hence, the analyst needs to know the system 
configuration either to allocate system reliability to 
component reliabilities or to combine component 
reliabilities to establish system reliability.  The system 
may evolve with new code or components and these may 
affect usage of the reliability estimations. Finally, the 
system operational profile may show how different 
modes are utilized and may need to have separate 
reliability measurements for them.  

 
2.2  Test approach 
 
      The analyst needs to understand the testing approach 
such as the integration of components or the approach to 
correction of faults. Without this knowledge, failure data 
may be incorrectly associated with wrong components or 
the assigned time intervals may not represent reality.   
 
2.3   Model selection 
 
     Model selection is complex. Criteria for model 
selection include predictive validity, ease of parameter 
measurement (e.g., the amount of data should be ~5 
times as much as the number of parameters), quality of 
assumptions, capability, applicability, simplicity, 
insensitivity to noise (calendar instead of execution time)  
[2]. 
      Predictive validity addresses the forecast quality of 
each model and is usually determined by a goodness-of-
fit test. Most models have parameters that need to be 
determined before the equations of the model can be 
solved.  Fortunately the tool used in this study performs 
these determinations.  
     On the other hand, matching a project to the 
assumptions of a model may not be easy.  The 
assumptions need to match the actual project testing and 
operational environment as closely as possible. These 
include features such as ability of test inputs to encounter 
faults, independence of effects of all failures, test  
coverage, observation of all failures when they occur, or 
assurance that faults removed on discovery are not 
counted again.    The development and test staffs need to 
interact with the analyst to determine which assumptions 
hold for a specific project. This function requires 
intellectual effort and project knowledge by the analyst 
prior to the steps performed by software reliability 
modeling tools.  
     Capability refers to the ability of a model to estimate 
other reliability measurements such as the mean-time-to-
failure (MTTF) or the confidence intervals for estimated 
parameters.  The tool used in this study provides these 
measurements according to each model’s equations.  
     Each model may accommodate different development 
and operational environments and therefore should 
consider features such as evolving software, failure 
severity classification, incomplete failure data, multiple 
installations of the same software, and project 
environments departing from the model assumptions.    
     Simplicity refers to three time-consuming and 
expensive parts of reliability measurement: the data 
collection process, the modeling concepts, and 
implementation. Data collection and implementation are 
addressed in sections 2.4, 3, and 4 of this paper. The 
simpler the modeling concepts, the more easily an 



analyst may understand the assumptions, estimate the 
parameters, and interpret the results, overall assuring 
more accurate results from use of these techniques.  
     A model’s results should not be biased by noise, such 
as extraneous data or incorrect data. For software 
reliability, the usual noise is the time component.  The 
hardware reliability models are based on a continuous 
variable of time. For hardware, failure data may be 
collected in calendar time that may be a continuous 
variable, especially for wear-out. Calendar time and 
execution time may be the same. For software, failure 
data usually are provided in calendar time, which is not 
usually the same as execution time, especially during 
testing, and therefore is not necessarily a continuous 
variable. Adjustments need to be made to get as close as 
possible to execution time. Calendar time can be 
especially difficult to adjust if the data collection system 
records only the date of the failure but not the number of 
hours (or days) spent testing.  The analyst can assign a 
test interval of a day but must know whether testing 
occurs on weekends and holidays.   
 
2.4  Data collection 
 
     Data collection of any type, in any environment, in 
any domain, is generally resisted and difficult to achieve 
due to time and perception that data collection interferes 
with the “real” work. To overcome resistance, the 
analyst must clearly state the objectives for the data and 
request only the data essential to successful use of the 
models.  Data are crucial to the success of software 
reliability modeling. Section 3 describes features of data 
collected in a project at GSFC and the transformation of 
that data for use with software reliability models.  
     The analyst must remember that if data requests are 
too intrusive on the project, costs and schedules suffer 
and project cooperation may go rapidly to zero. The 
project and the analyst will benefit from discussions 
about the project’s development and test processes and 
about the system description. The analyst must keep the 
data collectors motivated, get access to the data quickly 
and review it promptly.  
 
2.5  Parameter estimation 
 
     Three common methods for parameter estimation 
include the method of moments, least squares, and 
maximum likelihood estimation. The tool used in this 
study performs maximum likelihood estimation, the most 
commonly used approach.  
 
2.6  Model validation 
 
     All of the software models supported by the tool used 
in this study have been used in industry, often the 

industry for which the model’s designer first exercised 
the model.  As discussed in Section 2.3, model selection 
is based on the assumptions of the model. The analyst 
needs to examine the model’s assumptions very carefully 
to assure that the model is valid in the specific domain 
and even for a new project within a domain.  Also, 
different models may not necessarily produce similar 
results for the same data. A caution is provided by 
Littlewood, “Different software reliability models can 
produce very different answers when called upon to 
predict future reliability in a reliability growth context.  
Users need to know which, if any, of the competing 
predictions are trustworthy.  Some techniques are 
presented which form the basis of a partial solution to 
this problem.  In addition, it is shown that this approach 
can point the way towards more accurate prediction via 
models which learn from past behaviour” [4].  
      Farr cautions us to be careful about a model’s 
assumptions, for some are unforgiving [5]. For example, 
Schneidewind’s model assumes the time intervals over 
which the failures are observed are equal.  In practice, 
this means establishing equal intervals and including 
those in which no failures occurred. Other assumptions 
may be violated, such as the distributional one about the 
number of failures per unit time, and still credibly fit the 
data. The Brocklehurst-Littlewood chapter in [6] 
provides a partial solution to this problem of model 
validation.  It is difficult to characterize programs that fit 
specific models because programs differ so widely in the 
problem being solved, development practices, 
architecture, degree of fault tolerance and other features.  
The models themselves make fairly crude assumptions 
about what may be a complex failure process. A way 
around this situation may be to evaluate each model’s 
predictive accuracy upon each data set that is analyzed, 
that is, compare a prediction with an actual observation 
of a program.  
     Potential solutions to model validity may seem 
complex, but discussion in Section 4 about an 
application with a software tool indicates that model 
validity is manageable. The tool exercises several 
models, either time-between-failure models or failure 
count models.  The tool provides statistical analyses 
concerning the accuracy and validity of each model 
relative to the input data.   
 
2.7  Analysis  
 
     Once all the previous steps have been performed, the 
analyst executes the tool for the selected model(s). The 
difficult part is that the analyst must study the results  (1) 
to determine if the timeline should be changed and (2) to 
decide what values to enter to enable predictions.  The 
analyst may have selected several models and may need 
to determine which is the better fit for the project. 



3.    Collection of data 
 
     At GSFC, some projects use the Distributed Defect 
Tracking System (DDTS) to collect testing and 
operational nonconformance data, primarily for 
managing and tracking non-conformances.  In the 
context of this study, failures are nonconformances that 
caused the system or component not to perform a 
required function within specified limits, or the 
termination of the ability of a functional unit to perform 
its required function, or caused program operation to 
depart from program requirements.   
     For reliability prediction and estimation, it is 
important for the analyst to ensure data content and 
validity by reviewing the data when collected to ensure 
that all necessary data for each fault have been 
submitted. The analyst needs to keep information about 
the system and all the activities in developing, testing, 
and debugging and correcting it to ensure that the data 
match data each model’s assumptions and are organized 
the data correctly for use with the models. 
      Several projects have their own implementation of 
the DDTS, each possibly with slight variations in the 
data collected.   Each is a distributed system with access 
rights given to many people with different project 
responsibilities. Data are entered and housed in the 
resident database for each project’s system.  In some 
cases, data from that database may be offloaded 
elsewhere for other purposes.  It is likely that an analyst 
who may not be directly aligned with the project will 
work with the offloaded data. The analyst needs to 
ensure that all necessary supporting information is 
collected and included in the transferred data. 
      Beyond content, the analyst must be concerned with 
organizing the DDTS data to provide the form of data 
required by the software reliability models, either time-
between-failure or failure counts by time interval data. 
This data reduction activity may involve considerable 
manipulation and transformation activities.   
 
3.1  Data content  
 
     The software reliability modeling data requirements, 
number of faults in a time interval or the time between 
failures, appear to be simple. But, when projects collect 
data, the intent is often to provide information 
prioritizing corrections and for tracking the fault 
correction process.  The DDTS contains a large amount 
of data that must be reduced to the simplicity of the 
required input.   
     Most likely, for a specific project, data from all 
testing activities for all components are entered into the 
system. Specific information that the analyst must be 
able to extract consists of the activity that found the 
failure, the date of the failure, and the severity of the 

failure. In Section 6, we show that the date the correction 
began and date the correction was completed are 
important for improvements to software reliability 
modeling for the fault correction process. The analyst 
must be able to define equal time intervals, e.g., 1 day.  
When the timeline is long and occurs over holidays or 
weekends, then it is important to know if testing 
occurred during those times. When there are intervals 
with no failures, the analyst needs to know if either 
testing or fault correction occurred. The size or number 
of test intervals must be adjusted to accommodate 
intervals with more than the usual staff size.   These 
issues are important in order to get a discrete variable as 
close to continuous as possible.  
      Because the defect tracking systems appear to be 
used across the entire project, the analyst should 
understand the testing approach concerning integration 
of components and how they are identified within the 
tracking system. Data must be sorted by components as 
they are tested.  The analyst needs to discuss with the 
project staff exactly what data are stored in the DDTS to 
have valid data for the modeling.  If the project does not 
collect appropriate data, then either modeling cannot be 
used for that project or the requirements for data 
collection need to be changed. It would be best for the 
analyst to look at a project’s DDTS frequently to validate 
that the data have been entered correctly and in a timely 
manner.   
     Some initial considerations for modeling purposes 
include: 
 the data should be collected from integration test 

through operation  
 extensive changes should not be routinely made, 

that is, software cannot be changing so fast that 
data gathered one day is radically different from 
another day 

 the data should provide an indicator of the type of 
testing, e.g., component testing, integration testing, 
or system testing, including names of components. 

     To emphasize again, the analyst must have 
information about the validity of the data, including but 
not limited to its history, other events occurring when the 
data were collected, how accurate the date submitted is 
relative to the date actually found and especially the 
dates of testing.   
     Some of the models may be used at unit or integration 
test, but most are used during system testing and 
operation. Failure data in the form of time between 
failure or the failure count within equal time intervals are 
input to software reliability modeling.  Each model uses 
data that meet assumptions about failure rate and 
intensity and fit a curve implied by the model’s 
mathematics.    
 
 



3.2  Data manipulation 
 
     When data are provided to an analyst in a database or 
spreadsheet, sorting data into appropriate categories is 
simpler than when the data is presented in text files. In 
this case, a text file for each of thousands of data records 
requires considerable effort to sort out extraneous 
information and consolidate the necessary data into a 
manageable spreadsheet or database.   
      When the analyst has direct access to a project’s 
DDTS or a database derived from it, many of the 
difficulties may be eliminated because of the ease of 
sorting and transforming usually provided by database 
capabilities. The data may be further reduced by some of 
the project parameters. For example, faults at severity 1-
3 may be corrected at a higher priority than those at 
severity 4 and 5, and so data for the severity 4 and 5 
faults can be eliminated.  Data may be needed only for 
certain components and must be sorted out.  
     The data for an analysis must come from the same 
testing activity and are extracted from the date of 
discovery and the number of faults found on the same 
date. Sorting the data may require considerable 
manipulation of the DDTS data. The specific tool used in 
this study requires a text file of either the number of 
faults found in every time interval or the number of time 
intervals between faults.   Manipulating the data into the 
appropriate text format may require varying amounts of  
manual effort depending on how readily the database or 
spreadsheet produce output accepted by the software 
reliability modeling tools.   
 
 
4.    Software tool availability 
 
 
     Software support is a valuable resource because the 
reliability models require several complicated steps 
engaging mathematical functions using logarithms and 
exponents and statistical techniques such as maximum 
likelihood estimation and Chi square goodness of fit. As 
an example, in Schneidewind’s model, the time to next 
failure(s) at time t is computed by Equation 1. 
 
T F(t) =     [(log(α/(α-β(Xs,t+Ft))))/β]-(t-s+1)  (1) 
 
Ft is the number of faults for which the prediction Time 
to next failure(s) TF(t) is made at time t; α, β are the 
parametric values computed for the model; s is the 
starting interval for using observed failure data in 
parameter estimation for the Schneidewind model.  A 
software tool making invisible these computations and 
the need to understand them expertly would be valuable 
to the user.   

   Recent WEB searches identify basically the same 
software reliability modeling tools from a survey 
conducted in the early 1990s [7] and those listed in the 
AIAA recommended practices [2].  A compact disc (CD) 
containing several tools is provided with the Software 
Reliability Handbook [6].  One of these is SMERFS, a 
public domain tool developed by Dr. William Farr of the 
Naval Surface Warfare Laboratory and employs several 
of the models.  We selected it for use with our 
experiments. 
         
Table 1. SMERFS^3 software reliability models 

Interval Data Models 
   Brooks and Motley’s Binomial Model 
   Brooks and Motley’s Poisson Model 
   Generalized Poisson Model (2 versions) 
   Non-homogeneous Poisson Model 
   Schneidewind’s Model (3 treatments) 
   Yamada’s S-Shaped Model 
Time Between Failure Models 
   Geometric Model 
   Jelinski / Moranda Model 
   Littlewood and Verrall Linear Model 
   Littlewood and Verrall Quadratic Model 
   Musa’s Basic Model 
   Musa’s Logarithmic Model 
   Non-homogeneous Poisson Model 

       
          SMERFS has been modernized and is now called 
SMERFS^3 to indicate the latest version. Table 1 shows 
the models contained in SMERFS^3.   While this version 
has not been officially released, it is easier to use than 
earlier versions because of the user interface.  Because 
we had access to the tool and its developer, it became the 
baseline tool supporting this study. 
     After examining a project’s characteristics, an analyst 
may reasonably permit SMERFS^3 to select the 
appropriate models. SMERFS^3 provides other services 
that free the analyst to worry only about the goodness of 
the failure data and the interpretation of the results.  The 
tool computes the parameters needed for the various 
models and checks results for validity and accuracy of 
each model. It provides confidence intervals for the 
parameters for the models utilizing them.   
     The tool allows the user to select a specific model or 
to have SMERFS^3 select those that are appropriate.  All 
interval data models use the same input and all time-
between-failures use the same.  The program provides 
some transformation assistance between the two types of 
data. It is speedy: exercising several reliability models on 
a data file of over 300 time intervals took only seconds.   
     SMERFS^3 is only a tool. It does not interpret results, 
that is, it will not replace the intellectual ability of the 
analyst. The analyst must rely on knowledge about the 



project and judgment to understand what the results 
mean relative to the system’s reliability.  Even though 
the tool computes all the mathematics, a fair amount of 
understanding of the underlying mathematics and 
statistics is needed to interpret the results. The tool does 
perform curve fitting on the input data and will refuse to 
exercise the data on inappropriate models.  Of the 
models it does exercise, results may vary widely.  The 
parametric values of the models are provided, but the 
analyst needs to understand them to decide which output 
results are meaningful.  After an analyst acquires 
experience, interpretation and judgment may become 
easier and quicker.  Execution time is in seconds but the 
time to prepare the data may be substantial. The time to 
interpret results, alter the length of the data set, and 
repeat the process may be overwhelming.  The example 
in Section 5 provides evidence that most of the 
difficulties can be overcome with a little experience. 
 
 
5.    Example of software reliability modeling 
 
 
     We describe this experience with software reliability 
modeling to characterize the advantages and the 
constraints of using this measurement technique. While 
the tool reduces manual computations, questions remain 
about other tasks. How much knowledge of the 
mathematics would a user need to interpret the results?     
We describe the steps necessary before applying 
SMERFS^S and the process of using the tool. We show 
sample output.   Finally we discuss some lessons learned. 
 
5.1  Initial process steps 
 
     Of several projects available to us, we discuss only 
one project. We had a description of the variables in the 
DDTS and some information about testing schedules. 
We could not develop a true characterization of the 
operational environment or the various test activities and 
their relationships to the pieces of the software system.  
Given those constraints, we prepared the data for the 
modeling process.  
     Of the many data fields of the DDTS, only a few were 
significant.  These were the dates the failures occurred, 
the activity or phase in which they were found, and their 
severity level.  The severity level mattered because 
corrections of non-conformances at lower severity levels 
were deferred and may have reappeared in later testing.   
The activity or phase was the only information for 
sorting the failure data by software component or 
subsystem.  Because their names were not always 
consistent, we asked a project person to sort failures into 
their proper activities. The date provided the link to 

time-between-failure and to the failure count for a time 
interval.  For time intervals of a day, we located 
calendars to eliminate weekends and holidays.   
     While it was much simpler to use intervals of a week 
or a month, we needed to map those time periods 
properly and to ensure we had enough data for these 
larger intervals.   Regardless of whether the data was in a 
database or spreadsheet, manipulation and reduction to 
forms needed by the models took a significant amount of 
time. The process is error-prone and requires 
verification.  Macros may help to reduce the effort.  
 
5.2   Exercising the models 
 
     SMERFS^3’s pull-down menus are concise and leave 
little room for misunderstanding. The user is asked to 
specify whether the input is time-between-failure or 
interval data.  For interval models, failure counts for 
every interval, even those without failures, must be 
provided in a text file with care not to have a blank line 
at the end of the file.  The user may select the models to 
be executed but usually it is better to let SMERFS^3 do 
the selections with accuracy analyses for the models.  If 
the data are grossly inappropriate for a model, the tool 
will inform the user.  Table 2 shows a sample of input 
data, for nine intervals of one week. Week 7 had no 
failures and must be shown.  The count of failures is in 
column 1 and column 2 indicates the data are for 
software failures. 
 

Table 2. Sample interval data for SMERFS^3 
1 1. 
6 1. 
7 1. 
3 1. 
7 1. 
5 1. 
0 1. 
3 1. 
1 1. 
 
5.3 Sample Executions 
 
     From several project activities, we chose integration 
testing for subsystem 1 spanning 26 months, or, 110 
weeks, with 130 failures. We chose intervals of one 
week. We exercised the data at 69 weeks, and 110 weeks 
to see if predictions made at 69 weeks would indicate the 
full 130 faults found at 110 weeks. There were 129 faults 
at 69 weeks.   The circles in Figure 1 indicate the 
observed faults, and the models, beginning at the bottom 
to the top are Brooks and Motley’s binomial, Brooks and 
Motley’s Poisson, Schick–Wolverton Poisson, 
generalized Poisson weighting 2, non-homogenous 
Poisson and Schneidewind (treatment 1). The number of 



observed failures varied widely in the first weeks, as is 
anticipated. The number of failures leveled off and 
reliability growth occurred, that is, reliability was higher.    
 

 
Figure 1. Sample graphs of models      

     
      SMERFS^3 generates a chart for each model with 
the estimates of total faults and total faults remaining 
produced by the models.  The prediction section requires 
interaction with the analyst.  The queries vary slightly 
depending on the model and produce answers such as 
how many failures to expect within a specific test time or 
how long it would take to encounter n faults. Figure 2 is 
the output for Yamada’s S-shaped model. Of course if 
the estimated number of faults is less than 1, then a 
prediction cannot be made.  
 

 
Figure 2. Sample output with predictions 

 
     Table 3 shows some possible predictions with a 
summary of other output for the interval data of 69 
weeks, for the models that produce confidence intervals.       
The models of Table 3, Generalized Poisson –2, non-
homogeneous Poisson, and Yamada, produce Chi-square 

values to indicate how good the curve fit is to the input 
data. Using Chi-square fits and confidence intervals 
helps as does comparing results of same data using one 
shorter and one longer set of observed values for 
predictions. The model that produced the prediction 
closest to the 110 weeks of data is Yamada.  The analyst 
uses all of this information to determine which model to 
use.  Analyzing all this information helps an analyst to 
avoid selection of a poor model.  Ideally the analyst 
exercises the models for time beyond the time of the 
observed data to enable predictions far out.  
   
Table 3. Predictions with confidence intervals 

 LC
I 

P UCI LCI TNF UCI 

GP2 .027 .035 .043 137.8 139.
3 

140.
8 

NHP
P 

.022 .032 .042 129 144 171 

YAM .072 .084 .096 129 131.
7 

154.
3 

 LC
I 

TNF
R 

UCI CHI
2 

Pred  

GP2 8.88 10.34 11.8
5 

127 .362  

NHP
P 

0 15 42.3 58.6 4.21  

YAM 0 2.68 25.3
7 

117.8 1.38  

P: probability of detecting faults 
Pred: # faults predicted in next 10 test periods 
TNF: total # faults 
TNFR: total # faults remaining 
Chi2: Chi-square value 
 
 
 5.4  Lessons Learned 
 
      When we initiated the software reliability modeling 
process on the first set of data, we had no experience 
with either SMERFS^3 or data from any of the defect 
tracking systems.   To ease difficulty in learning how to 
use SMERFS^3, we recommend that the tool contain a 
brief tutorial with one set of input data of interval type 
and one of time between failure type, along with output 
and interpretation for each.  Within a couple hours 
anyone could understand how this tool can be used for 
software reliability modeling. We believe that once an 
analyst has applied the SMERFS^3 tool, he will have 
little or no future difficulty utilizing it.   
     While each run with SMERFS^3 is almost 
instantaneous, an analyst needs to have reports with the 
charts and plots to show project staff. While a printout of 
the models’ numeric values for the charts is available, 



the predictions are not printed. Saving the output data to 
a file accessible by other people took some manipulation. 
As SMERFS^3 matures, some of the problems with 
saving output may disappear. Until then, the lesson is for 
a user to save each screen output to a WORD file. A 
macro may ease the difficulty of manipulating screen 
outputs in a file.  
     Data issues are somewhat more involved and concern 
either data collection or data manipulation. Most GSFC 
projects span several years.  The defect tracking systems 
provide data for monitoring the status of non-
conformances.  Records for test schedules and staffing 
levels do not appear in the database but without this 
information the time between failures may be incorrect. 
It may also be misleading when there are no failures for 
consecutive intervals because it is not clear if testing has 
occurred during those intervals. If not, then the intervals 
need to be adjusted. Similarly two people conducting 
tests instead of one person changes the interval size.  The 
lesson is that test schedule information and staffing 
levels should be required information in the tracking 
system and should be made available to the analyst.   
     Data input must be constructed so that the failures are 
from the same software component; therefore failures 
should relate to the software component. The “activity” 
field almost accomplishes this, but could be enhanced 
with another field naming the involved component(s).   
The lesson here is to require the software component 
name field in the tracking system. Also, if some fault 
corrections are deferred indefinitely, then they should be 
labeled accordingly.   Addressing these lessons should 
satisfy the data collection concerns.  
     The analyst needs to manipulate the data considerably 
to organize it by software type and test activity, then by 
data and finally by count. These are manual and highly 
error-prone tasks. Macros to ease the difficulty of 
manipulating the project data in a spreadsheet may 
mitigate these concerns.   
     The remaining step, interpretation of results, is 
probably the most difficult aspect of software reliability 
modeling.  It also depends on how well the data were 
interpreted in the first place. Therefore, the first lesson is 
that the analyst must work carefully with project staff to 
understand the organization, test schedule, and 
operational environment of the software. SMERFS^3 
produces statistical information to aid the analyst in 
selecting the best model for the data and in evaluating 
the estimates.  Another lesson is that training in   
understanding the results and applying to decisions 
concerning the project would remove the final hurdle to 
making this technology a practical instrument at GSFC 
for software reliability measurement.  
  
 

6.     Modeling the fault correction process 
 
 
     In general, software reliability models have been 
based on hardware reliability models and hence have 
focused on failure data and predicting failure occurrence. 
They have not given equal priority to modeling the fault 
correction process. However, there is a need for fault 
correction prediction, stemming from the fact that the 
fault correction process is vital to ensuring high quality 
software. If we only address failure prediction, reliability 
assessment will be incomplete because it would not 
reflect the reliability of the software resulting from fault 
correction. In addition to achieving greater accuracy in 
reliability prediction, there are by-product benefits 
associated with fault correction prediction as follows: 
 Predicting whether reliability goals have been 

achieved: If no predictions are made of the number 
of faults to be corrected, fault correction rate, and 
fault correction time, accurate prediction of 
reliability cannot be obtained. 

 Providing stopping rules for testing as follows: (1) 
The predicted number of remaining faults is less 
than or equal to a specified critical value and  (2) 
The fault correction rate asymptotically approaches 
zero. 

 Prioritizing tests and allocating test resources: 
Software with high values of number of remaining 
faults and low fault correction rates are given high 
priority in testing and allocation of resources, such 
as personnel and computer time.  

      Dr. Norman Schneidewind developed a fault 
correction modification for SATC and applied it initially 
to his model [8].   The modification assumes that the 
number of corrected faults has the same general form as 
the number of detected faults but with a variable delay 
dT, that is, Equations 2 and 3 are similar for D(T) and 
C(T), the predicted number of faults detected at time T, 
and the number of faults corrected at time T, 
respectively: 
 
D (T) = (α/β)[1 – exp (-β ((T-s+1)))] + Xs-1  (2) 
 

C (T) = (α/β) [1- exp (-β ((T-s+1) - dT))] + Cs-1           (3) 
 
     The parameters α and β are computed from the 
maximum likelihood function in SMERFS^3, and s, also 
computed from SMERFS^3, is the starting interval for 
using observed failure data in parameter estimation. Xs-1 
and Cs-1 are the observed fault count and fault correction 
count in the range [1, s-1], respectively. Using these 
equations and the cumulative probability distribution, the 
new model yields new measures for the number of 
remaining faults, the time required to correct C faults, 
the proportion of faults corrected, the fault correction 



rate, and other prediction capabilities such as whether 
reliability goals have been achieved. Data from the space 
shuttle and the project already described in this paper, 
but for 35 weeks, were used to validate the model.  The 
derivation, equations and validation are provided in [8].  
     From a practical standpoint, the question is “How can 
one utilize these new equations?” Dr. Schneidewind has 
provided SATC with a spreadsheet to compute these new 
measures. The values of α, β and s are computed from 
SMERFS^3 and are entered into the spreadsheet, along 
with the interval failure data.  The analyst must exercise 
care in entering the data but can also make and control 
predictions directly within a worksheet. These can 
readily be delivered to the project member requesting the 
predictions.  By using a spreadsheet, instead of a 
software tool in executable form, the analyst can enter 
new equations or models.  Not least, with control of the 
output, the analyst can choose how to present the results 
in graphs readily produced by the spreadsheet.  
   
  
7.    Conclusions 
 
 
     Software reliability modeling is one of many methods 
to aid in measuring software reliability. Others may 
include inspections, testing, change control boards, 
metrics gathered from these and other methods.  In a 
paper addressing software reliability modeling for 
Shuttle software, Schneidewind suggests that perhaps 
experience and judgment are most important for 
understanding software reliability measurements [9]. 
      With careful application of this technique, project 
managers have a valuable tool to assist them in making 
major decisions.  These include but are not limited to 
establishing or altering test schedules for integration and 
system testing, for staff allocation, for product release, 
including release of some components for the next stage 
of integration, and for maintenance scheduling of 
released products.  
     This study has shown that software tools can perform 
most of the mathematical and statistical functions of 
software reliability modeling.  Analysts can perform the 
technique within reasonable amount of time and without 
a deep understanding of the mathematics. The two major 
issues are data reduction and interpretation of results. 
The first of these can be simplified by macros for either a 
data base or spreadsheet used in preparing the data for 
SMERFS^3.  The latter can be enabled with experience 
applying the technique.   
     The SATC can enable a project to gain access to this 
critical measurement technology in a number of ways: 1) 
by training its engineers, 2) through teaming and 
partnering on a phase-driven basis, or 3) by serving as 
independent analysts, i.e., assessing the data and 

formally reporting results and conclusions.  The choice 
of option remains a project manager's prerogative; the 
critical issue is to achieve understanding and reduce the 
project's risk. 
     Finally, the new Schneidewind model adjusts for fault 
correction, which the earlier models do not. Applying 
this technique requires the use of both a software 
reliability modeling tool to get parametric values and a 
spreadsheet for the actual correction model. This appears 
to be a promising approach to software reliability 
measurement. More experience applying this model to 
actual project data is needed to judge its value.   
     Overall, this study has shown that software reliability 
modeling has a valuable role in software measurement 
and that the technique can be applied in a practical 
manner.  
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